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A novel method for automated grid generation of ice shapes
for local-�ow analysis
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SUMMARY

Modelling a complex geometry, such as ice roughness, plays a key role for the computational �ow anal-
ysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry
for local �ow analysis over an aerodynamic surface. The �rst enhancement is use of the leading-edge
region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the
base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use
of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for
modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides
an analytical expression, which describes the roughness geometry and the corresponding derivatives.
The factors a�ecting the performance of the Fourier analysis were also investigated. It was shown that
the number of sine–cosine terms and the number of control points are of importance. Finally, these
enhancements are incorporated into an automated grid generation method over the airfoil ice accretion
surface. The validations for both enhancements demonstrate that they can improve the current capability
of grid generation and computational �ow �eld analysis around airfoils with ice roughness. Copyright
? 2004 John Wiley & Sons, Ltd.

KEY WORDS: CFD; aircraft icing; stream function–vorticity; Prandtl transposition; Fourier; grid
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1. INTRODUCTION

Surface geometry modelling for the �ow �eld analysis over rough surfaces is an important
task in CFD studies. Abrupt changes in the surface geometry of the roughness can make it
di�cult to generate a quality grid. Also, the convex parts of the roughness geometry may
cause the grid cells to overlap at points away from the surface. Even with a commercial grid
generation package and a moderate two-dimensional ice shape, it can take extensive man-
hours to create a useable grid for �ow analysis. This is why grid generation for the rough
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surfaces is still a challenging and time consuming process, particularly for ice roughness on
a wing.
LEWICE and SMAGGICE, which are explained in detail in References [1, 2], respectively,

are commonly used software tools for the numerical �ow �eld analysis of airfoils with ice
roughness, as in the study by Cebeci and Besnard [3]. The baseline LEWICE employs a panel
method for the �ow solver. However, a grid-generator and Navier–Stokes �ow solver can be
used with LEWICE in order to better capture the �ow physics and make a more accurate
ice accretion prediction. SMAGGICE is a semi-automatic, specialized grid generation package
that is used to generate a structured grid around iced airfoils. The way that these algorithms
deal with the di�culties of grid generation for ice roughness is to create blocks over the
roughness geometry where necessary, and to use very �ne grid resolution in order to decrease
the e�ect of violation of orthogonality. This is a common practice for other algorithms that
employ a structured grid scheme. The bene�t of this practice is that the �ow �eld in the
convex areas of the roughness geometry is covered by these extra blocks and the problem of
having overlapping grid cells is minimized.
The methods of creating extra blocks and=or re�ning the grid are techniques not unique

to those researchers who are using LEWICE or SMAGGICE. Chung et al. [4] and Chung
and Addy [5] used one �ne-grid inner block and one outer block to overcome orthogonality
di�culties. Chi et al. [6] employed several blocks to cover the �ow �eld neighboring the
roughness in order to avoid orthogonality and overlapping grid cell problems.
Thompson and Soni [7] also used a structured grid approach but the way they overcame

some of the grid generation problems for ice roughness is di�erent than the other two solutions
mentioned above. They used a weighting function, which adjusts the skewness of the grid
lines automatically. The other typical method employed for �ow �eld analysis over rough
surfaces is an unstructured grid. Dunn and Loth [8] used an unstructured grid to study the
e�ects of simulated spanwise ice shapes. It should be noted that, to date, there is no clear
advantage on the use of unstructured grids for wing icing problems.
One other group of studies on �ow �eld analysis on rough surfaces focuses on a parabola

as their base geometry, since it resembles many 4 digit airfoils in the leading-edge region
and there is an analytical solution for the potential �ow past a parabola [9], which is taken
advantage of in this work. Another bene�t of using this type of approach is that it enables
the governing �ow equations to use a lower Reynolds number (based on leading-edge radius
of curvature), while the results can still be transformed to actual �ight Reynolds numbers.
In addition, it enables the algorithm to focus the computational resources in a small region
(i.e. the leading-edge) so that a more detailed �ow �eld analysis is possible. There is one
further bene�t, which can be realized through the use of a Prandtl transposition, or shearing
transformation, in conjunction with the parabola. The roughness present on the airfoil surface,
and hence the parabola surface, can be suppressed by embedding it in the governing equations
through the Prandtl transposition. As a result of this suppression, the base geometry over
which the grid generation is applied becomes a smooth surface, which in turn eases the grid
generation process.
This study is a continuation of the work done by Huebsch and Rothmayer [9] in which

unsteady viscous �ow was simulated for �ow past a parabola with analytic roughness shapes.
The �rst enhancement in this study is the implementation of the leading edge of the actual
airfoil as a ‘negative’ perturbation to the parabola baseline. The geometric similarity between
the parabola and the leading edge of the NACA 0012 airfoil can be seen in Figure 1. The
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Figure 1. Leading-edge region of the airfoil and the parabola.

parabola leading edge matches the airfoil geometry up to approximately six percent of airfoil
chord. But downstream of that location, the airfoil deviates from the parabola surface signif-
icantly. Therefore implementing the actual airfoil geometry as a perturbation to the parabola
baseline surface is necessary both for more realistic results at downstream points as well as
improving the accuracy of the simulations and the comparisons for the unsteady �ow in the
leading-edge region.
The second enhancement is a novel approach for modelling roughness on the leading edge

of the airfoil. It is well known that by means of the Fourier analysis, a complex signal
may be decomposed into its components and therefore can be expressed by a function of
sine and cosine terms. The Fourier analysis was selected as the tool for roughness shape
analysis because many roughness geometries, in particular ice roughness, resemble the shape
of a complex signal, which can be expressed in terms of sines and cosines. Applying the
Fourier analysis to the roughness geometry enables us to obtain an analytic expression for the
roughness shape as well as its required derivatives.
The rationale behind trying to describe an ice shape with a single analytic expression is

a result of employing the Prandtl transposition to describe the roughness as a perturbation
to the baseline geometry and avoiding discontinuity problems at the surface. The bene�t of
using the Prandtl transposition is that the roughness geometry, which was originally a positive
perturbation on the parabola, is suppressed in terms of the �ow solver and becomes embedded
in the governing �ow equations (see next section for description). As a result of this, the
parabola remains as the base geometry. It is obvious that the grid generation over a clean
parabola is less complicated than that over a parabola with a roughness. However, since
the roughness geometry becomes embedded in the governing equations, it is more e�cient
to express the perturbation analytically. The use of a single analytic equation to describe
the roughness also helps to alleviate curvature discontinuity problems that would appear at
juncture points if other geometric �tting methods were used (e.g. splines).
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Figure 2. NACA 0012 and the selected ice shape (I-1998-000092).

The method described in this paper is being developed with the idea of using experimental
ice tracing shapes for the leading-edge roughness geometry as acquired from icing wind
tunnels. Resulting ice geometries are available from the NASA Glenn Icing Branch. Several
steps are required prior to applying the Fourier analysis to describe the ice shape. Initially,
the ice shape is smoothed using the SMAGGICE software. The amount of smoothing applied
was 50% in accordance with previous work [4]. The remaining steps involve scaling and
transformation of the ice shape to generate the necessary perturbations to the baseline parabola
surface, which are covered in the following section.

2. GOVERNING EQUATIONS

The governing �ow equations are the stream function–vorticity version of the 2-D incom-
pressible, unsteady Navier–Stokes equations, which are shown in non-dimensional form.

!t +  y!x −  x!y = Re−1(!xx +!yy) (1)

 xx +  yy =−! (2)

A series of transformations are applied to the governing equations to move from physical
space to computational space, which are discussed below.
An experimental ice shape was chosen for this work along with the corresponding airfoil,

which is shown in Figure 2. The ice shape and leading-edge geometry of the airfoil are �rst
non-dimensionalized by the chord length, then scaled by the airfoil leading-edge radius to �t
the parabola space. As a result of this scaling, the ice roughness and the airfoil leading edge
can be seen as perturbations to the baseline parabola surface (Figure 3).
The gap between the original parabola surface and the airfoil surface becomes larger further

downstream. Considering the downstream boundary conditions of the �ow solver, it is advan-
tageous to transition the airfoil leading-edge geometry back to the original parabola geometry
[9]. Therefore a transition curve is added aft of the airfoil leading edge in order to ensure a
smooth passage back to the main parabola surface. This transition curve is also a parabola
which is created based on: the co-ordinates of the last airfoil point used, the surface derivative
at this same point, and the co-ordinates of the junction point where the transition parabola
meets the main parabola. The �nal version of the surface geometry in the physical plane is
shown in Figure 4. A majority of the computational resources are focused on the leading-edge
region and ice shape.
After scaling the airfoil and ice shape to parabola space, a conformal mapping is applied

to map the physical x–y plane to the �′−�′ plane, with the following equations:

x=
�

′2−�
′2

2
; y= �′�′ (3)
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Figure 3. Ice shape transformed to the leading edge of the parabola.
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Figure 4. Overall geometry: ice shape, NACA0012, transition curve and the parabola.

With this mapping, the parabola surface in the physical plane becomes a line, where �′=1 in
the transformed (�′−�′) plane. The roughness geometry and leading-edge region of the airfoil,
which were perturbations on the parabola, become perturbations to this line (see Figure 5).
Following the transformation to the �′–�′ plane, the Prandtl transposition is applied to

transform the variables to �−� space through the following formulae:

�′= �; �′= �+ f(�) (4)

where f(�) is an analytic expression representing all of the perturbations on the �′=1 line,
including the roughness geometry. The only stipulation on the perturbation geometry for this
transformation and for the Fourier analysis (discussed below) is that it has to be a single-

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:579–597



584 E. OGRETIM AND W. W. HUEBSCH

ξ
-6 -5 -4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

5

6

´

´

η

Figure 5. Parabola and the roughness in the transformed plane.

valued function in the �′–�′ plane. For a majority of experimental ice shapes, this does not
pose a problem with respect to the parabolic coordinate system. As a result of the Prandtl
transposition, the perturbations o� the straight line of �′=1 originating from the ice roughness
and the airfoil geometry are suppressed and the �nal surface geometry is a straight line in
the �–� plane at �=1.
The transformations outlined above are applied to the governing equations (Equations (1)

and (2)). In addition, a technique of splitting the stream function and vorticity terms into
a viscous and inviscid part is employed to improve convergence of the algorithm [10]. A
�nal transformation to computational space, ��– ��, is applied that incorporates stretching and
clustering of grid lines [9]. The transformations produce a uniform rectangular grid in ��– ��
space. The �nal stream function–vorticity transport equations are given as

������� + ( ���)
2� �� �� − f�� ������

− 2f�
��� ������ �� + (1 + (f�)2) �������

+(1 + (f�)2)( ���)
2� �� ��=(−h2)� +�� (5)

�� + h2�t + ��� ���(� ��� �� −���� ��) + ( inv)�′ ���� �� − f�( inv)�′ ���� ��

− ( inv)�′ ���� ��=Re−1[ ����� �� + ( ���)
2� �� �� − f�� ���� �� − 2f�

��� ���� �� ��

+(1 + (f�)2) ����� �� + (1 + (f�)2)( ���)
2� �� ��] (6)
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The h2 term is a scale factor equal to �2 + �2 + 2�f+f 2. To help stabilize the algorithm
during global iterations, a �ctitious time-derivative term (or pseudo-time) is added to both
the stream function and vorticity transport equations: �� and ��, respectively. The inviscid
solution for �ow past a parabola with surface roughness present can be found from

 inv = (�+ K)(�+ f − 1) (7)

The K term is the displacement of the stagnation point from the vertex of the parabola and can
be related to the angle-of-attack of the airfoil. A more detailed discussion of these governing
equations is provided in Huebsch and Rothmayer [9].
No-slip boundary conditions, with u= v=0, are applied at the surface. In terms of the

stream function, and making use of the split variables, the no-slip boundary condition can be
written as

�= −  inv and � ��= − ( inv)�
���

(8)

At the far-�eld boundary, � large but �nite, the viscous e�ects die out and a fully inviscid
�ow is recovered. Therefore, the split viscous variables, � and �, are set to zero at this
boundary. At the far-downstream boundary, the �ow is assumed to be steady, with the upper
and lower downstream boundaries placed at a large, but �nite value of |�|. Davis [11] has
shown that the viscous solution for �ow past a parabola approaches the Blasius solution as
� → ∞. The reader is referred to References [11, 9] for more details.
The impact of the Prandtl transposition can be clearly seen as the roughness perturbations

on the base geometry become embedded in the governing equations. The f, f�; f�� terms in
these equations express the perturbation geometry, slope, and curvature on the parabola. With
this �nal version of the governing equations, the perturbations are suppressed and the grid
generation process is simpli�ed. However, the perturbation geometry has to be expressed
analytically to avoid jump discontinuity problems.
For the cases in which complex roughness shapes are involved (i.e. ice roughness) the

Fourier analysis is used to obtain the analytical expression of the roughness geometry. The
Fourier analysis requires the original roughness geometry data as well as the transformed
version into the �′–�′ plane. After this is completed, the following equations are used in
order to obtain the analytical expression for the roughness shape:

ai =
2

(�N − �1)

∫ �N

�1
f(�) cos

(
2�i�

(�N − �1)

)
d� i=0; 1; 2; : : : (9)

bi =
2

(�N − �1)

∫ �N

�1
f(�) sin

(
2�i�

(�N − �1)

)
d� i=1; 2; 3; : : : (10)

f̃(�) =
1
2
a0 +

i=N∑
i=1




ai cos
(

2�i�
(�N − �i)

)

+bi sin
(

2�i�
(�N − �i)

)


 (11)
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where �1 and �N are the �rst and the last points, respectively, ai’s are the coe�cients of the
cosine terms, bi’s are the coe�cients of the sine terms, f(�) is the transformed roughness
data and f̃(�) is the analytic roughness expression in terms of the sine and cosine functions.
The �ow simulations executed in this study made use of the full unsteady Navier–Stokes

equations, but with a two-dimensional constraint. Appropriate spatial and temporal resolutions
were implemented to resolve the geometry as well as capture the relevant �ow physics. The
�ow solver is clean and robust with no requirement for explicit arti�cial dissipation or other
dissipation inducing numerical devices. A detailed discussion of the algorithm is given in
Reference [9].
An implicit numerical method is used to solve the governing �ow equations, which is

second-order accurate in time and space. One complete spatial sweep consists of two alter-
nating sweeps in the streamwise direction and one sweep in the normal direction, which is
equivalent to one pseudo time step. The algorithm is capable of solving for steady or unsteady
�ow. If the �ow is unsteady, the code marches the solution in time and at each physical time
step, the pseudo time terms are iterated to convergence before moving to the next physi-
cal time step. As a starting solution for the full Navier–Stokes calculations, the parabolized
Navier–Stokes equations are solved for �ow past a clean parabola at a constant angle-of-attack
and the solution is used as input for the full Navier–Stokes. The parabolized Navier–Stokes
solver uses the Blasius solution as a starting solution.

3. RESULTS AND DISCUSSION

The current study focuses on implementing new techniques for surface modelling on airfoils,
with the goal of a more automated grid generation process when complex surface roughness
is present. A local-�ow Navier–Stokes algorithm is used to solve for the �ow �eld in the
leading-edge region of the airfoil and not have to include the entire airfoil. This allows the
solver to place a dense grid in the region of interest. An example of the grid used over a single
hump and its close-up are shown in Figures 6 and 7, respectively. Though the grid shown
in Figure 7 is non-orthogonal in the surface perturbation region, the �ow solver does not
show any sensitivity to grid skewness. As discussed in the previous section, the grid around
the parabola with perturbations is transformed to a uniform rectangular grid in computational
space.
For verifying the newly implemented features for the surface geometry analysis (i.e. leading-

edge of an airfoil and the Fourier analysis for roughness), various test cases were performed.
First, use of the NACA 0012 leading-edge region as a perturbation to the parabola surface
for modelling the airfoil geometry was tested. In the study by Huebsch and Rothmayer [9],
the parabola was used to model the leading edge of a symmetric airfoil. But in the present
study, the actual airfoil leading-edge surface is implemented as a perturbation to the parabola
surface by means of the analytic formula for the NACA 0012. This allows a geometrical
match further downstream than the 6% of chord limit of the parabola. The formula for the
airfoil is given below in the �–� plane.

f=
0:6

0:0159�
(a�0:5 − b� − c�2 + d�3 − e�4)− 1 (12)
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Figure 6. Overview of the mesh over parabola with a single hump.
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Figure 7. A close up of the mesh around the single hump.

where
a=0:2969 b=0:1260 c=0:3510

d=0:2843 e=0:1015 �=
0:0159
2

(�2 − 2f − f 2)
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Figure 8. Contours over NACA 0012 in pitchup for the benchmark case.

Since the above equation for the f values de�ning the NACA 0012 airfoil is an implicit one,
iteration methods are needed for obtaining these f values for the corresponding � values.
In the course of the study it was seen that di�erent iteration methods could result in an
accurate solution for the f values. However the results may not be in good match for the f�,
and the f�� values, which are also de�ned by implicit analytic expressions. One would expect
f� to be symmetric with respect to the origin and f�� to be symmetric with respect to �-
axis. The iteration method used in this study produced values that were non-symmetric and the
consequence was an arti�cial vortex bubble generated by the �ow solver at the location where
this non-symmetry begins. The problem was solved by assuming the f, and f�� values for
the positive � direction to be the same for the negative � direction, and by assuming the
negative of f� for the positive � direction to be the f� values of the negative � direction.
As a veri�cation test case, the clean NACA 0012 leading-edge region was placed in a

rapid pitch-up maneuver to create a dynamic stall vortex and the results were compared with
a previous study, which was done over the entire airfoil by Choudhouri et al. [12]. The
results of Choudhouri et al. [12] are shown in Figure 8. The comparison from the current
study is shown in Figure 9 (both plots show the stream function contours). The formation of
the primary, secondary and the tertiary vortices are well predicted, as are the general vortex
structures. The work by Suito et al. [13] considers the entire NACA 0012 airfoil in the same
maneuver and produced similar results. It should be noted that care must be taken in the
placement of the transition curve between the airfoil and the main parabola. The presence of
the transition curve may suppress the vortices and also reduce the rate at which they move
downstream. Therefore it is imperative to have a transition curve which merges to the main
parabola as far downstream as possible in order to avoid its e�ects on the upstream �ow.
As a result of the comparison of the two stream function plots, it can be concluded that the
implementation of the leading-edge region of the NACA 0012 airfoil works well and provides
reasonable results.
The second veri�cation performed in this study is to assure that the transition curve between

the airfoil leading-edge region and the main parabola does not a�ect the upstream �ow, as
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Figure 9. Contours over NACA 0012 in pitch up with grid 1 (481× 81).

mentioned above. Di�erent transition curves were used in identical steady, 0◦ angle-of-attack
cases. The results show that the upstream �ow remains una�ected provided that there is a
su�cient grid resolution and that the transition curve meets the parabola a su�cient distance
downstream of the airfoil leading-edge region.
The third veri�cation concerns the use of the Fourier analysis to model the roughness

geometry. For this purpose, an analytically de�ned hump on the parabola surface is modelled
by using the Fourier analysis. The formula of the hump in the �–� plane is given by

f(�)= h(�− �l)5(�r − �)5 (13)

where h is the user-de�ned height of the hump, and �l and �r are the left and right boundaries
of the hump, respectively. Figure 10 shows the hump geometry as de�ned by Equation (13)
and the regenerated version from the Fourier analysis. As this �gure shows, there is a good
match between the two shapes.
Over the course of the study, it was found that the number of sine and cosine terms

used in the Fourier analysis was a key parameter for the accuracy of the regeneration of the
roughness shape. If an insu�cient number of terms are used, the regenerated ice shape ( f̃(�))
may exhibit an excessive amount of smoothing and=or ‘wiggles’. If, on the other hand, too
many terms are used, the regenerated ice shape becomes extremely sensitive to the changes in
the roughness geometry and �uctuates around the original data. Therefore, the correct number
of terms is necessary in order to have an accurate modelling of the ice shape geometry. The
present study uses an automated iterative subroutine in determining the optimum number of
terms to provide a good match with the original roughness data. The number of terms that
are used for modelling the selected ice shape in the current study is 40 (i.e. 40 sine and 40
cosine terms).
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Figure 10. Geometry comparison of a single hump by the analytic formula and the Fourier analysis.

An additional item that a�ects the accuracy of the regeneration process is the number of
control points that are used for the Fourier analysis. If the number of points is not adequate,
non-physical oscillations are produced in the regenerated ice shape. Therefore, by parabolic
curve �tting, arti�cial control points are added between every two original control points in the
smoothed ice shape in order to increase the accuracy of the regenerated ice shape. Figure 11
shows the comparison of the regenerated ice shape in the physical plane without added control
points. In Figure 12, extra control points were added, which produced signi�cant improvement
in the accuracy of the roughness modelling as compared to Figure 11. This is particularly
true in the roughness around the stagnation point.
The results show that the Fourier analysis performs well in modelling the complex surface

geometry, but this accuracy cannot be maintained as far as the derivatives are concerned (see
Figure 13). The reason for this is that the Fourier analysis has a ‘wavy’ nature, which is
not consistent with the variation of the surface geometry derivatives in the case of relatively
smooth roughness geometries (e.g. single smooth hump). However this de�ciency in the calcu-
lation of the derivatives can be eliminated by use of central di�erencing. Since the roughness
geometry is fully described by an analytic expression, the �rst and second derivatives can
also be found analytically. However, this study shows that �nite central di�erencing improves
the calculation of the derivatives. Figure 13 shows the second derivative for a single hump at
various grid locations. This plot compares three di�erent methods for determining the second
derivative values: (1) analytic: the hump is described by Equation (13) and exact values for
the second derivative are calculated, (2) Fourier: taking the second derivative of the resulting
Fourier analysis equation, and (3) central di�erencing: a central di�erence stencil is used to
calculate the second derivative values using the regenerated roughness data. As Figure 13
shows, the central di�erencing technique yields better performance with respect to the exact
solution.
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Figure 11. The original smoothed ice shape and the regenerated version, without added cp’s.
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Figure 12. The original smoothed ice shape and the regenerated version, with added cp’s.

The impact of the de�ciency in modelling the surface derivatives is obvious when comparing
the wall vorticity plots over the single hump. In Figure 14, it is seen that the case in which
central di�erencing is used for the derivatives matches very well with the results from the
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Figure 13. Comparison of three methods to calculate the second derivative.
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Figure 14. Variation in wall vorticity for di�erent types of derivative analysis (without cp addition).

case in which the geometry is modelled using the analytical formula, whereas the Fourier
case produces wiggles.
Having veri�ed the development ideas, these new methods were then used for analysing

the �ow �eld past the NACA 0012 leading-edge surface with ice accretion. In the present
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Figure 15. The generated grid over the ice shape.

study, an experimental ice tracing shape, shown in Figure 2, was used for the validation of
the Fourier analysis. This is an experimental ice tracing from the NASA Glenn Research
Center Image Archive (IRT Image Number: I-1998-000092). The Reynolds number based on
the leading-edge radius of curvature was chosen to be 1000. This corresponds to a chord
Reynolds number of 0:63× 105 for the NACA 0012 (see Reference [9] for more details).
Based on the above discussion, it was assumed that the addition of extra control points would
provide better performance from the Fourier analysis and that the use of central di�erencing
would provide the most accurate simulation for the derivatives.
The automated grid generation scheme outlined in this paper is used for generating the grid

over the selected ice shape. An overview of the grid around the ice shape and a zoom-in
version are shown in Figures 15 and 16, respectively. As these graphs clearly show, even at a
very complex level of roughness, the current scheme can easily generate a �ne mesh, which
can resolve the �ow details. The entire process for generating the grid around the ice shape
takes a matter of seconds on a standard computer; this gives a feel for the capability of the
current automated grid generation scheme.
In Figures 17 and 18, the wall vorticity plots are shown for �ow past the ice shape. The

only di�erence between these �gures is that for Figure 17, the Fourier analysis is used for
the derivatives whereas for the second �gure, central di�erencing is used for the derivatives.
These �gures show that, except at the junction points where the ice shape meets the airfoil
surface, the two plots look the same. This is a result of the ice shape being inherently a
rough and wavy surface, which is consistent with the nature of the Fourier analysis. So, for a
complex ice shape such as this, the derivatives at the surface are captured by both the Fourier
analysis and central di�erencing. Figure 19 shows the stream function contours around the
NACA 0012 airfoil leading edge with ice accretion. The recirculation regions contained within
the roughness of the ice shape can be seen in this �gure.
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Figure 16. Zoom into the grid over the ice shape.
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Figure 17. Wall vorticity over the ice shape (Fourier geometry analysis with added cp’s
and Fourier analysis for the derivatives).

4. CONCLUSIONS

In this study, several geometric modelling enhancements were investigated for implementation
into a local-�ow Navier–Stokes solver. The enhancements focused on the capability of using
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Figure 18. Wall vorticity over the ice shape (Fourier geometry analysis with added cp’s
and central di�erencing for the derivatives).
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Figure 19. Contours over the ice shape (Fourier geometry analysis with added cp’s and
central di�erencing for the derivatives).
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actual experimental ice shapes in the �ow simulations along with the corresponding airfoil
shape. These improved capabilities allow for an automated grid generation process for complex
surface roughness and more accurate modelling of the aircraft icing �ow �eld. Although the
present study focuses on two-dimensional geometries, the methodologies can be extended to
three dimensions and work is currently underway in this direction. The key �ndings of the
current study are summarized below.

1. By studying the �ow past a parabola with an analytically well-de�ned hump, use of the
Fourier analysis for the geometry modelling is veri�ed by comparing the results to the
analytic case. Use of the Fourier analysis allows actual experimental ice shapes to be
incorporated in the �ow simulations.

2. It is seen from the same veri�cation study that there are some factors that contribute to
the accuracy of the Fourier analysis. These are:
a. Control point addition to reinforce the modelling. This forces the f̃(�) function to
follow the given geometry, instead of wandering in the vicinity of it.

b. Finding the right number of terms used for the Fourier analysis. This avoids the
extreme level of sensitivity of the f̃(�) function against the sudden changes in the
geometry.

3. Having regenerated the geometry by the f̃(�) function, use of central di�erencing for
calculating the derivatives on relatively smooth roughness geometries produces better re-
sults. For the complex roughness shapes, the Fourier analysis produces results comparable
to the central di�erencing.

4. Use of the leading edge of the airfoil as a perturbation to the parabola leading edge is
veri�ed by comparison to a test case in which the entire NACA 0012 airfoil is studied
in a rapid pitch-up maneuver.

5. Use of the Fourier analysis and the Prandtl transposition has provided a novel method
for automating the grid generation process around a complex ice shape.
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